

AVS

COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

Attur Main Road, Ramalingapuram, Salem - 106. (Recognized under section 2(f) & 12(B) of UGC Act 1956 and Accredited by NAAC with 'A' Grade) (Co - Educational Institution | Affiliated to Periyar University, Salem ISO 9001 : 2015 Certified Institution) principal@avscollege.ac.in | www.avscollege.ac.in Ph : 98426 29322, 94427 00205.

Syllabus for

B. Sc GEOLOGY

CHOICE BASED CREDIT SYSTEM -

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK

(CBCS – LOCF)

(Applicable to the Candidates admitted from 2023-24 onwards)

VISION

• To attain excellence in the field of education by creating competent scholars with a touch of human values.

MISSION

- To accomplish eminence in the academic domain.
- To provide updated infrastructure.
- To educate value based education.
- To impart skills through efficient training programs.
- To cultivate culture and tradition with discipline and determination.

REGULATIONS

1. Eligibility for Admission:

Candidates for admission to the first year of the Degree of Bachelor of science, Geology course are required to have passed the Higher Secondary Examination (Academic Stream) conducted by the Government of Tamil Nadu or an examination as equivalent to 10 +2 courses including CBSE, which have been recognized by the Periyar University. The candidates for admission to the Geology shall have passed the qualifying Examination with the subjects under physics and chemistry as compulsory subjects. For admission of students in the Government/Aided/ Unaided Colleges of Arts and Science, guidelines issued by the Director of Collegiate Education, Chennai– 6may be followed.

2. Duration:

The course shall extend over a period of three years comprising of six semesters with Two semesters in one academic year. There shall not be less than 90 working days for each Semester. Examination shall be conducted at the end of every semester for the respective Subjects.

3. Eligibility for award of degree:

B.Sc. in Visual Communication is a 3-year full-time undergraduate course, the minimum eligibility for admission to which is the successful completion of the Senior Secondary Certificate (10+2) or 10+3 year Diploma qualification from a recognized educational board, With a minimum required eligibility prescribed by the University. The program is spread over 3 years, divided into 6 semesters of 6 months each The course of study shall comprise instruction in the following subjects according to the syllabus and books prescribed from time to time.

5. Scheme of Examination:

The theory examination shall be three hours duration to each paper at the end of each semester. the candidate failing in any subject(s) will be permitted to appear for each failed subject(s) in the subsequent examination. The practical examinations for UG course should be conducted at the end of the even semester

6. Passing Rules:

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed in First Class. All other successful candidates shall be declared to have passed in Second Class. Candidates who obtain 75% of the marks in the aggregate shall be deemed to have passed in First Class with Distinction provide they pass all the examinations prescribed for the course at first appearance.

i) Theory

The candidate shall be declared to have passed the examination if the candidate secure not less than 40 marks out of 100 (CIA - 10 marks out of 25 and EA - 30 marks out of 75) in the Examination in each theory paper.

ii) Practical

The candidate shall be declared to have passed the examination if the candidate secure not less than 40 marks put together out of 100 (CIA - 16 marks out of 40 and EA -24 marks out of 60) in the University examination in each practical paper.

Program	mme Outcomes (POs)						
On succ	On successful completion of the B. Sc. Geology						
PO1	To develop an in-depth knowledge and skills in qualitative and quantitative research methods through laboratory, field and web modes of learning.						
PO2	Recognize the need for sustainable use of earth resources, and value environmental, indigenous and other community perspective on geological activities.						
PO3	Apply geological knowledge and critical thinking skills to identify a problem and to describe a strategy for handling.						
PO4	Synthesize geological data on arrange of spatial and temporal scales to make interpretations that allow for scientific uncertainty.						
PO5	Work effectively and professionally in multidisciplinary teams as a member and a leader and be able to manage and analyze complex ethical issues.						

Program	Program Specific Outcomes (PSOs)							
After the	e successful completion of B. Sc. Geology programme the students are expected to							
DCO1	Learn the essential properties of earth components, including its core, mantle,							
PSO1	asthenosphere, lithosphere, cryosphere, hydrosphere, atmosphere and biosphere.							
PSO2	Demonstrate mastery of the conceptual framework for understanding earth system							
1502	processes and the development of earth's features over time.							
PSO3	Acquiring geologic data in the field, laboratory, satellites and big data from data banks,							
1303	Analyzing and interpreting the data through application of scientific method.							
PSO4	Enable to apply successfully advanced and current concepts and methods of the							
1504	geosciences to formulate and solve complex geological problems.							
PSO5	Apply knowledge and techniques from allied fields, including chemistry, physics,							
1505	biology, mathematics, and computing, to solve geological problems.							
PSO6	Capable of understanding the impact of a geo-engineering solution in global and							
1300	societal context.							
	Students take-up a geologic problem and utilize theoretical, analytical or experimental							
PSO7	approach to solve the problem through their project work. The students will be able to							
	defend their project in an open forum.							
l								

Programme Educational Objectives (PEOs)

The B. Sc. Geology programme describes accomplishments that graduates are expected to attain within five to seven years after graduation.

PEO1	To demonstrate an understanding of the fundamental principles, concepts in theoretical and practical knowledge of the geological Science.
PEO2	An ability to recognize, evaluates, interpret, and understand issues and opportunities at the frontiers of geological domain.
PEO3	Ability to apply the basic knowledge of geology to real-life problems besides the use of computational and mathematical knowledge and tools.
PEO4	Work ethically and professionally alone and as part of a team, complying with applicable legislation and managing time and other resources efficiently and effectively and manage, execute their geological plans to meet desired goals realistic constraints.
PEO5	Communicate geological information concisely and accurately using written, visual, and verbal means appropriate to the situation.

CREDIT DISTRIBUTION FOR 3 YEARS B. Sc. GEOLOGY PROGRAMME

Part	Course Type	Credits per Course	No. of Papers	Total Credits
Part I	Language – I (Tamil/Hindi/French)	3	4	12
Part II	Language – II (English)	3	4	12
	Core Courses- Theory	4	7	28
	Core Courses- Theory	5	6	30
	Core Courses- Practical	5	2	10
Part III	Core Courses- Practical	3	2	6
Part III	Major Elective Courses- Theory	3	2	6
	Allied Courses - Theory	3	4	12
	Allied Courses - Practical	1	2	2
	Allied Courses - Practical	3	1	3
			Total	121
	Non Major Elective Courses	2	2	4
		2	4	8
	Skill Enhancement Courses	1	1	1
	Foundation Course	2	1	2
Part IV	EVS (Environmental Studies)	2	1	2
	Value Education	2	1	2
	Internship/ Field Visit/Industrial visit	2	1	2
	Professional Competency Skill	2	1	2
	Extension Activity (NSS/NCC/Physical Education)	1	1	1
			Total	24
			Total Credits	145

7

CONSOLIDATED SEMESTER WISE AND COMPONENT WISE CREDIT DISTRIBUTION FOR 3 YEARS B. Sc GEOLOGY PROGRAMME

Parts	Semester I	Semester II	Semester III	Semester IV	Semester V	Semester VI	Total Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	15	13	16	22	18	97
Part IV	4	4	3	6	4	3	24
Part V	-	-	-	-	-	-	-
Total	23	25	22	28	26	21	145

*Part I, II and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programmes and the other components IV and V have to completed during the duration of the programmes as per the norms, to be eligible for obtaining the UG degree.

METHOD OF EVALUATION

Evaluation	Components	Marks	
	Continuous Internal Assessment Test	15	
	Assignments	3	
	Class Participation	2	
Internal Evaluation	Distribution of marks for Attendance (in percentage) 96 – 100: 5 Marks 91 – 95: 4 Marks 86 – 90: 3 Marks 81 – 85: 2 Marks	5	25 Marks
External Evaluation	End Semester Examination		75 Marks
	100 Marks		

Note: 1.UG Programmes- A candidate must score minimum 10 marks in Internal and 30 marks in External Evaluation.

CONTINUOUS INTERNAL ASSESSMENT

Categorizing Outcome Assessment Levels Using Bloom's Taxonomy

level	Cognitive Domain	Description
K1	Remember	It is the ability to remember the previously learned concepts or ideas.
K2	Understand	The learner explains concepts or ideas.
K3	Apply	The learner uses existing knowledge in new contexts.
K4	Analyze	The learner is expected to draw relations among ideas and to compare and contrast.
K5	Evaluate	The learner makes judgments based on sound analysis.
K6	Create	The learner creates something unique or original.

Question Paper Blue Print for Continuous Internal Assessment- I& II

Duration: 2 Hours Maximum: 50 m					narks		
Section							
Section	K1	K2	K3	K4	K5	K6	Marks
A (no choice)	10						10 X 1 =10
B (no choice)		1	1				2 X 5 =10
C (either or choice)				3			3 x 10 = 30
Total					50 marks		

Note: K4 and K5 levels will be assessed in the Model Examination whereas K5 and K6 Levels will be assessed in the End Semester Examinations.

Question Paper Blue Print for Continuous Internal Assessment- I

Time: 2 Hours	Total Mark	inimum Pass: 20 Marks	
Unit	Section - A	Section - B	Section - C
Ι	Q.N. 1, 2, 3, 4, 5	Q.N. 11	Q.N. 13 A, 13 B
I or II	-	-	Q.N. 14 A, 14 B
II	Q.N. 6, 7, 8, 9, 10	Q.N. 12	Q.N. 15 A, 15 B

<u>SECTION – A (10 X 1 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

$\underline{SECTION - B (2 X 5 = 10 Marks)}$

ANSWER ALL THE QUESTIONS

<u>SECTION – C (3 X 10 = 30 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

Question Paper Blue Print for Continuous Internal Assessment- II

Time: 2 Hours

Total Marks: 50 Marks

Minimum Pass: 20 Marks

Unit	Section - A	Section - B	Section - C
III	Q.N. 1, 2, 3, 4, 5	Q.N. 11	Q.N. 13 A, 13 B
III or IV	-	-	Q.N. 14 A, 14 B
IV	Q.N. 6, 7, 8, 9, 10	Q.N. 12	Q.N. 15 A, 15 B

<u>SECTION – A (10 X 1 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

<u>SECTION – B (2 X 5 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

<u>SECTION - C (3 X 10 = 30 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

Question Paper Blue Print for Model Examination & End Semester Examination

Duration: 3 Hours			Maximum: 75 marks					narks
Section			K level					
			K2	K3	K4	K5	K6	Marks
A (no choice, three questions from each unit)								15 X 1 =15
B (choice, one question from each unit)			1	1				2 X 5 =10
	Courses with K4 as the highest cognitive level				4	1		
C C C C C C Course with K5 as the C C C C C C C C C C C C C C C C C C C					3	2		5 x 10 = 50
each unit)	Course with K6 as the highest cognitive level wherein two questions each on K4, K5 and one question on K6 are compulsory.				2	2	1	
Total							75 marks	

11

Question Paper Blue Print for Model Examination & End Semester Examination

Time: 2 Hours	Total Mark	ks: 75 Marks Minir	num Pass: 30 Marks
Unit	Section - A	Section - B	Section - C
Ι	Q.N. 1, 2, 3	Q.N. 16	Q.N. 21 A, 21 B
п	Q.N. 4, 5, 6	Q.N. 17	Q.N. 22 A, 22 B
III	Q.N. 7, 8, 9	Q.N. 18	Q.N. 23 A, 23 B
IV	Q.N. 10, 11, 12	Q.N. 19	Q.N. 24 A, 24 B
V	Q.N. 13, 14, 15	Q.N. 20	Q.N. 25 A, 25 B

<u>SECTION – A (15 X 1 = 15 Marks)</u>

ANSWER ALL THE QUESTIONS

$\underline{SECTION - B (2 X 5 = 10 Marks)}$

ANSWER ANY TWO QUESTIONS

<u>SECTION - C (5 X 10 = 50 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

<u>Question Paper Blue Print for Model Practical Examination & End Semester</u> <u>Examination (Practical)</u>

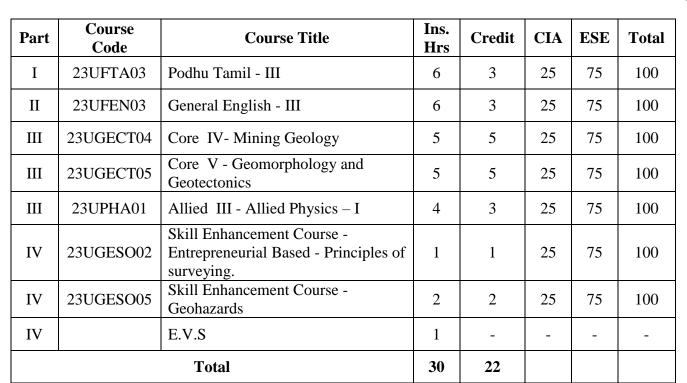
Time: 3 Hours	Total Marks: 60 Marks	Minimum Pass: 24 Marks
Practical Marks	Maximum Mark	Minimum Mark
Internal	40	16
External	60	24
Total	100	40

Evaluation for End Semester Examinations (Practical)

Record	10 marks
Formula with expansion	05 marks
Observation with data	20 marks
Viva-voce	05 marks
Calculation	15 marks
Result with units	05 marks
TOTAL	60 MARKS

*Submission of record with due certification is a must for external practical examinations.

**A student should complete all requires experiments to get 10 marks for the record.

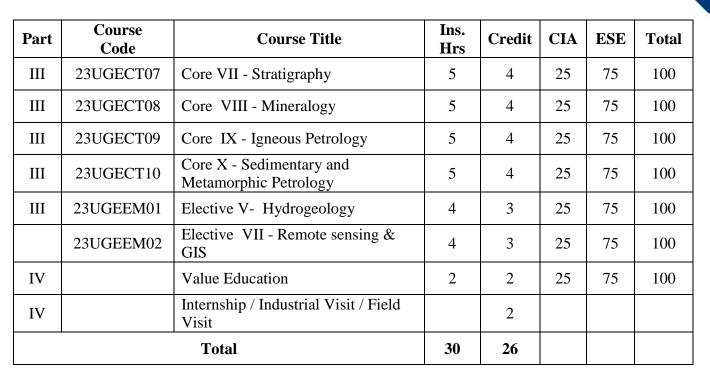

Scheme of Examination for B. Sc Geology

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA01	Podhu Tamil - I	6	3	25	75	100
II	23UFEN01	General English - I	6	3	25	75	100
III	23UGECT01	Core I - General Geology and Crystallography	5	5	25	75	100
III	23UGECT02	Core II - Geo-Statistics	5	5	25	75	100
III	23UCHGEA01	Allied - Chemistry For Physical Science - I	4	3	25	75	100
IV	23UGEFC01	Foundation Course - Understanding the earth.	2	2	25	75	100
IV	23UTANE01	Non Major Elective Course - Pechukalai Thiran	2	2	25	75	100
	Total		30	23			

First Year – Semester - I

First Year – Semester - II

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA02	Podhu Tamil - II	6	3	25	75	100
II	23UFEN02	General English - II	6	3	25	75	100
III	23UGECT03	Core III - Palaeontology	5	5	25	75	100
III	23UGECP01	Core Practical I - Crystallography and Palaeontology	5	5	40	60	100
III	23UCHGEA02	Allied - Chemistry For Physical Sciences - II	4	3	25	75	100
III	23UCHGAP01	Allied Practical I - Chemistry For Physical Sciences - I	3	1	40	60	100
III	23UCHGAP02	Allied Practical II - Chemistry For Physical Sciences – II	3	1	40	60	100
IV	23UGEFC02	Foundation Course - Basics of Earth Science	2	2	25	75	100
IV	23UVCNP01	Non Major Elective Course - Basic Photography	2	2	25	75	100
	Total			25			


Second Year – Semester - III

Second Year – Semester - IV

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA04	Podhu Tamil - IV	6	3	25	75	100
II	23UFEN04	General English - IV	6	3	25	75	100
III	23UGECT06	Core VI - Structural Geology & Photogeology	5	5	25	75	100
III	23UGECP02	Core Practical II - Structural Geology, Remote Sensing, Survey Practical	5	5	40	60	100
III	23UPHA02	Allied - IV - Allied Physics - II	3	3	25	75	100
III	23UPHAP01	Allied Practical II - Allied Physics Practical - I	3	3	40	60	100
IV	23UGESO04	Skill Enhancement Course - Field Hydrogeology and Techniques	2	2	25	75	100
IV	23UGESO05	Skill Enhancement Course – Geo-heritage and Geo-tourism	2	2	25	75	100
IV		E.V.S	1	2	25	75	100
	Total			28			

College of Arts & Science

Autonomous)

Third Year - Semester - V

Third Year – Semester – VI

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
III	23UGECT11	Core XI - Regional Geology	6	4	25	75	100
III	23UGECT12	Core XII - Economic Geology and Mineral Economics	6	4	25	75	100
III	23UGECT13	Core XIII - Applied Geology	6	4	25	75	100
III	23UGECP03	Core Practical III - Mineralogy and Petrology practical	5	3	40	60	100
III	23UGECP04	Core Practical IV - Economic geology and Ore analysis practical	5	3	40	60	100
IV		Extension Activity	-	1	-	-	-
IV		Professional Competency Skill	2	2	25	25	
	Total		30	21			

****Ins. Hrs** – Instructional Hours, **CIA-** Continuous Internal Assessment, **ESE-** End Semester Examination

College of Arts & Science

Autonomous

Semester: I	Course Code: 23UGECT01	Hours/Week: 5	Credit:5		

COURSE TITLE: CORE I - GENERAL GEOLOGY AND CRYSTALLOGRAPHY

Course Overview:

- 1. This course covers a comprehensive exploration of the cosmos, starting with the evolution of the universe and progressing through the formation of stellar systems, including our Milky Way Galaxy. Delving into the solar system, it examines the inner and outer planets, detailing their characteristics.
- 2. The study extends to various celestial bodies like satellites, asteroids, meteors, and comets.
- Moving closer to home, the Earth's movements, such as revolution and rotation, as well as celestial events like solstices and equinoxes, are discussed. Time standards, including GMT and IST, are explained.
- 4. The course also delves into Earth's dynamic components, encompassing the atmosphere, monsoons, El Niño, hydrosphere, and lithosphere.
- 5. The origin of the Earth is explored through theories like the Nebular and Planetesimal hypotheses, along with Tidal and Vonweizacker's hypotheses.

Learning Objectives:

- 1. The main objective of this course is to enumerate the origin of Earth.
- 2. To describe the concepts of Dating and internal structure of the Earth
- 3. To explain various components of crystals and crystallography
- 4. To study various class and forms of an crystal system.
- 5. To determine various crystallographic properties of crystals with suitable examples.

Unit - I	Evolution of the Universe	09 Hours		
Universe – Evoluti	on of the Universe – Stellar system			
Milky Way Galaxy				
Evolution of Galaxy.				
Solar System – Inn	er and outer planets – characteristics of solar system.			
Satellites – Asteroi	ds – Meteors – comets. Earth – movements – revolution			

Rotation-solstice-equinox-time-GMT-IST.

Atmosphere – Monsoon- El Nino

College of Arts & Science

Hydrosphere – lithosphere.

Origin of the Earth - Nebular and Planetesimal hypothesis

Tidal &Vonweizacker's hypothesis

Merits and demerits of the above hypotheses

Unit - II	Age of the Earth	09 Hours			
Age of the Earth – old methods – new methods					
Radioactivity – Half-life period – Radiometric methods					
Uranium / Lead me	ethod – Rubidium / Strontium method				
Lead / Lead method – Potassium/Argon -Carbon 14 method.					
Numerical methods in dating.					
Interior of the Earth – Density – Shape – Seismic waves					
Composition and the	Composition and thickness of the crust, mantle and core.				
Discontinuities: Conrad Discontinuity – Mohorovicic Discontinuity					
Weichert-Guttenberg Discontinuity					
Unit - III	Crystallography	09 Hours			

Definition of crystal – Unit cell, Bravais Lattices, Plane groups,

Point groups & Space groups

Crystallographic axes - Symmetry Elements - Division of crystals into systems and

Point groups Axial Ratio - Parameters - Indices - Miller Indices - Symbol

Hermann Mauguin-notations

Law of Rational Indices - Forms - simple - combination - open - closed - unit

holohedral - hemihedral - tetrahedral - hemimorphic - enantiomorphous forms

Interfacial angle and its measurement with Contact Goniometer. Types of Goniometers

Unit - IV	Study of common Crystal forms				
Study of common f	forms and combinations of the following systems and classes:				
Isometric System: Hexoctahedral, Diploidal, Hextetrahedral					
Tetragonal System: Ditetragonal bipyramidal, Tetragonal bipyramidal,					
Tetragonal Pyramidal, Tetragonal Sphenoidal					
Hexagonal System: Dihexagonal Bipyramidal, Hexagonal Bipyramidal Trigonal System					
Ditrigonal Scalenohedral					

Ditrigonal pyramidal, Trirhombohedral, Trigonaltrapezohedral.

Unit - V	Twinning Crystals	09 Hours		
Study of common forms and combinations of the following systems and classes:				
Orthorhombic Syst	em: Rhombic Bipyramidal, Rhombic pyramidal,			
Rhombic Disphenoidal.				
Monoclinic System	: Prismatic			
Triclinic System: P	inacoidal			

Twinning in crystals

Laws of twinning – types: contact, interpenetration, polysynthetic,

repeated - important examples from six systems

Irregularities of crystals-An introduction to stereographic projection.

Text Book(s):

- 1. Mineralogy Dexter Perkins (2014), 3rd edition, Pearson New International Edition.
- Principles of Geomorphology; William D. Thornbury, (2004) CBS Publishers and Distributors, New Delhi.
- 3. Patwardhan, A.M., Dynamic Earth System, Prentice Hall, New Delhi(1999)
- 4. Mukherjee A.K, Principles of Geology, EW Press, KoIkata (1990)
- 5. Reed, J.S. &T.H. Wicander, Essentials of Geology, McGraw Hill., New York(2005)

Reference Books:

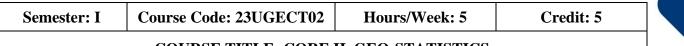
- Introduction to Mineralogy William D. Nesse (2000), Oxford University press, New York. USA.
- Textbook of Mineralogy E.S. Dana, (2000), 3rd edition, CBS Publishers & Distributers, New Delhi.
- 3. Crystals and Crystal Structures Richard J. D. Tilley(2006), John Wiley & Sons, England.
- Introduction to Mineralogy, Crystallography & Petrology Carl W. Correns (1967), 2nd edition, Springer
- 5. Radhakrishnan, V, General Geology, V.V.P. Publishers, Tuticorin (1996)

Web Resources:

- "Age of the Earth". U.S. Geological Survey. 1997. Archived from the original on 23 December 2005. Retrieved 2006-01-10.
- 2. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem

(mostly) solved". Special Publications, Geological Society of London.

- 3. Geo.libretexts.org
- 4. www.nationalgeographic.org
- 5. Solarsysytem.nasa.gov.


Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level				
CO1	Understand the origin of Galaxy, Our Solar System and Crystal Science	K1				
CO2	Knowledge on Dating of Earth Age	K2				
CO3	Correlate various Hypothesis on Origin of Earth	K3				
CO4	Analyze the importance of Crystallography Studies	K4				
CO5 Various Type minerals and their respective crystal system						
K1	K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

	Mapping (COs vs POs)							
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO								PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

COURSE TITLE: CORE II GEO-STATISTICS

Course Overview:

- 1. Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data.
- 2. It provides methods for making inferences about the characteristics of a population based on a sample.
- 3. Tabulation involves systematically arranging data in rows and columns, providing a concise and organized summary for easy analysis.
- 4. Frequency distribution is a table that shows the number of occurrences of different values in a dataset, grouped into intervals.
- 5. This course overview covers fundamental statistical concepts, from data organization and representation to measures of dispersion, correlation, and regression. It equips students with tools to analyze and interpret data in various forms.

Learning Objectives:

- 1. The main objective of this course is to importance of statistics in science.
- 2. To describe the concepts of basic statistics
- 3. To explain various components of advanced statistical methods
- 4. To study various graphical methods and its applicationsTo determine various correlation and regression studies and its importance in the field of
- 5. Geology

TT 1 / T		00 JJ
Unit - I	Introduction to Geostatistics	09 Hours

Definition and scope of statistics

Tabulation of data

Formation of Frequency Distribution

Diagrammatic representation of data-Bar diagrams

Pie diagrams-Graphic Representation of data

Histogram, Frequency polygon

Ogives

College of Arts & Science

Unit - II	Calculation of Mean, Median, Mode	09 Hours
-----------	-----------------------------------	-----------------

Arithmetic Mean Median, Mode, Combined arithmetic mean

Merits and demerits.

Unit - III	Measures of Dispersion	09 Hours
Unit - 111	Measures of Dispersion	09 Hours

Measures of Dispersion

Absolute and Relative measures Range, Quartile deviation,

Mean deviation, Standard deviation

Unit - IV	Method of Least square	09 Hours
		· · · · · · · · · · · · · · · · · · ·

Cure filling by the Method of Least square

Fitting straight line of the form Y = ax+b and

parabola $Y = a x^2 + b x + c$ (Simple problems)

Unit - V	Correlation	09 Hours
----------	-------------	-----------------

Correlation

Karl person's coefficient of correlation, Rank correlation

Spearman's Rank correlation coefficient

Reregression - regression equation and their properties

Text Book(s):

- 1. Statistics R.S.N. Pillai and V. Bhagavathi, Publicationss. Chand.
- Statistical Methods, Gupta, S.P. (2007): sultan Chand & sons Pvt Ltd, New Delhi, s5th Revised Edition.
- 3. Statistics for Geoscientists Marsal, D. Pergamon press, New York.
- Cline, Graysen (2019). Nonparametric Statistical Methods Using R. EDTECH. ISBN 978-1-83947-325-8. OCLC 1132348139. Archived from the original on 2022-05-15. Retrieved 2021-09-16.
- Anderson, D.R.; Sweeney, D.J.; Williams, T.A. (1994) Introduction to Statistics: Concepts and Applications, pp. 5–9. West Group. ISBN 978-0-314-03309-3

Reference Books:

- 1. Statistics for Geoscientists Marsal, D. Pergamon press, New York.
- 2. Statistics R.S.N. Pillai and V. Bhagavathi, Publications. Chand.

- Statistical Methods, Gupta, S.P. (2007): sultan Chand &sons Pvt Ltd, New Delhi, 5th Revised Edition.
- Cline, Graysen (2019). Nonparametric Statistical Methods Using R. EDTECH. ISBN 978-1-83947-325-8. OCLC 1132348139. Archived from the original on 2022-05-15. Retrieved 2021-09-16.
- 5. Anderson, D.R.; Sweeney, D.J.; Williams, T.A. (1994) Introduction to Statistics: Concepts and Applications, pp. 5–9. West Group. ISBN 978-0-314-03309-3

Web Resources:

- 1. https://en.wikipedia.org/wiki/Statistics
- 2. http://onlinestatbook.com/2/introduction/descriptive.html
- 3. https://en.wikipedia.org/wiki/Descriptive_statistics

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes:				
Upon s	successful completion of this course, the student will be able to			
COs	Statements	Bloom's Level		
CO1	To describe the definition, scope, classification, tabulation, drawing diagrams and plotting graphs of Statistics through Geological information.	K1		
CO2	To measure and interpret the various measures of averages using Geological data.	K2		
CO3	To measure and interpret the various measures of dispersions using Geological data.	K3		
CO4	To measure and interpret the relationship among the geological variables and to estimate and predict the unknown and future value through the regression lines using geological data.	K4		
CO5	To fit the curve using geological data.	K5		
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create				

Mapping (COs vs POs)								
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8							
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

 Semester: I
 Course Code: 23UGEFC01
 Hours/Week: 2
 Credit: 2

COURSE TITLE: FOUNDATION COURSE - UNDERSTANDING THE EARTH

Course Overview:

- 1. This course provides a comprehensive understanding of planet Earth and the broader cosmos. Topics include astronomy, exploring the origin and characteristics of the Universe, Solar System, and its planets, distinguishing between terrestrial and jovian planets, and examining meteorites and asteroids.
- 2. The study delves into Earth's position in the solar system, covering its origin, size, shape, mass, density, rotational and revolution parameters, and age
- 3. Additionally, it explores plate tectonics, sea-floor spreading, continental drift, midoceanic ridges, and trenches, transform faults, island arcs, the origin of oceans, continents, mountains, rift valleys, earthquakes, and volcanoes.
- 4. Further discussions revolve around the distribution of elements in the solar system and Earth, chemical differentiation, composition of Earth, geochemical cycles, and mass balance.
- 5. The course also explores the properties and geochemical behavior of major elements, providing a comprehensive overview of Earth's dynamic systems and processes.

Learning Objectives:

- 1. The main objective of this course is to understand various properties of Earth.
- 2. To describe the concepts of internal structure of the Earth
- 3. To explain various components related to external processes of Earth
- 4. To study concepts of various currents and atmospheric circulation.
- 5. To understand the availability of elements in the Earth.

Unit - IUnderstanding of planet Earth09 Ho	ours
--	------

Understanding of planet Earth: Astronomy, Geology, Meteorology and Oceanography.

General characteristics and origin of the Universe, Solar System and its planets.

The terrestrial and jovian planets.

Meteorites and Asteroids Earth in the solar system

Origin, size, shape, mass, density, rotational and revolution parameters and its age.

College of Arts & Science

09	Hours
----	-------

Unit - II Earth Internal structure

External Structure: hydrosphere, atmosphere and biosphere.

Earth's magnetic field.

Unit - III	Continental Drift	09 Hours

Plate tectonics

Sea-floor spreading and continental drift

Mid Oceanic Ridges, trenches

Transform faults and island arcs Origin of oceans, continents, mountains and rift valleys

Earthquake and Volcanoes.

Unit - IV	Weather and climatic changes	09 Hours

Concepts of eustasy;

Land-air-sea interaction Oceanic current system and effect of Coriolis force;

Wave erosion and beach processes

Atmospheric circulation

Weather and climatic changes.

Unit - V	Properties of elements	09 Hours

Distribution of elements in solar system and in Earth;

Chemical differentiation and composition of the Earth

General concepts about geochemical cycles and mass balance

Properties of elements

Geochemical behavior of major elements

Mass conservation of elements and isotopic fractionation.

Text Book(s):

- Duff, P. M. D., & Duff, D. (Eds.). (1993). Holmes' principles of physical geology. Taylor & Francis.
- 2. Emiliani, C. (1992). Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press.
- 3. Patwardhan, A.M., Dynamic Earth System, Prentice Hall, New Delhi(1999)
- 4. Mukherjee A.K, Principles of Geology, EW Press, KoIkata(1990)
- 5. Reed, J.S. & T.H. Wicander, Essentials of Geology, McGraw Hill., New York(2005)

Reference Books:

- 1. Gross, M. G. (1977). Oceanography: A view of the earth.
- Principles of Geomorphology; William D. Thornbury, (2004) CBS Publishers and Distributors, New Delhi.
- 3. Crystals and Crystal Structures Richard J. D. Tilley (2006), John Wiley & Sons, England.
- Introduction to Mineralogy, Crystallography & Petrology Carl W. Correns (1967), 2nd edition, Springer
- 5. Radhakrishnan, V, General Geology, V.V.P. Publishers, Tuticorin (1996)

Web Resources:

- "Age of the Earth". U.S. Geological Survey. 1997. Archived from the original on 23 December 2005. Retrieved 2006-01-10.
- Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London.
- 3. Geo.libretexts.org
- 4. www.nationalgeographic.org
- 5. Solarsysytem.nasa.gov

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

COs	successful completion of this course, the student will be able to Statements	Bloom's Level
CO1	Understand the properties of Earth	K1
CO2	Knowledge on Dating of Earth Age	K2
CO3	Correlate various Hypothesis on Origin of Earth	K3
CO4	Analyze the importance of Crystallography Studies	K4
CO5	Various Type minerals and their respective crystal system	K5
K1 -	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 -	- Create

College of Arts & Science

Autonomous)

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	3	3	2	3	3	3	2	2	
CO2	2	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	2	1	
CO4	3	3	3	3	3	2	1	1	
CO5	3	3	3	3	2	2	2	3	

3- Strong, 2 – Medium, 1 – Low

Semester: II	Course Code: 23UGECT03	Hours/Week: 5	Credit: 5		
COURSE TITLE: CORE III - PALAEONTOLOGY					

Course Overview:

- 1. Fossils are preserved remains or traces of ancient organisms. Conditions for fossilization include rapid burial, anaerobic environments, and mineralization.
- 2. Preservation modes include petrification, molds, and casts. Fossils aid in paleontological research, dating, and understanding evolutionary history.
- Geological time scale categorizes Earth's history into eons, eras, periods, epochs. Mollusca, a diverse phylum, include classes Pelecypoda (bivalves), Gastropoda (snails), and Cephalopoda (cephalopods). Cephalopoda further divides into orders Nautiloidea, Ammonoidea, and Dibranchia (Belemnites).
- 4. Arthropoda's Class Trilobita and Echinodermata's Classes Echinoidea, Crinoidea, and Blastodea contribute to Earth's paleontological diversity.
- 5. Paleobotany explores ancient plant life, including Gondwana Flora.

Learning Objectives:

- 1. Understand the basics of Fossils
- 2. Understand the importance of fossils in Geological studies
- 3. Know different phylum and their species with morphological changes
- 4. Understand and correlate fossil with various rock formations
- 5. Understand the importance of Palaeontology in dating and evolution studies

B. Sc Geology – Sylla	abus for candidates admitted from 2023-24 onwards.	AVS College of Arts & Scier
Unit - I	Introdution to Fossil	09 Hours
Fossils –Definition		
Conditions require	d for fossilization-	
Modes of preservat	tion	
Uses of fossils		
Geological time sc	ale	
Unit - II	Classification of Phylum	09 Hours
The morphology a	nd geological distribution of Mollusca	
Classes, Pelecypod	a, Gastropoda, Cephalopoda	
Orders - Nautiloide	ea, Ammonoidea, Dibranchia – Belemnites.	
Unit - III	Classification of Phylum	09 Hours
	ooda, Phylum Coelenterata	
	Subclass: Zoantharia Orders: Rugosa, Tabulata and Scale	eractina.
Phylum – Hemich	ordata	
Class: Graptozoa, o	order Dendroidea, Order Graptolitoidea.	
Unit - IV	Classification of Phylum	09 Hours
Phylum – Arthropo	oda Class: Trilobita	·
Phylum – Echinode	ermata Class: Echinoidea Class – Crinoidea	
Class: Blastoidea		
Introduction to Pal	eobotany, Gondwana Flora	
Unit - V	Dinosaurs	09 Hours
Short account of th	e following Dinosaurs	I
	ur and Ornithistian Dinosaurs	
Archaeopteryx		
Elementary idea of	Vertebrate fossils of India,	
Mounholosissi 1	noton of Dhylum Drotonog Orden Ferrominiford	

Morphological character of Phylum - Protozoa, Order – Foraminifera

Text Book(s):

- Palaeontology Evolution and animal distribution. .C. Jain and M.S. Anantharaman, (1996), Vishal Publications, Jalandhar.
- Invertebrate Palaeontology H.Woods, (1985), CBS Publishers and Distributors, New Delhi.
- 3. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995)
- 4. Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambridge University Press. D(2005)
- 5. Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952).

Reference Books:

- Principles of Invertebrate Palaeontology, Shrock R.R and Twenohofel W.H, (2005), CBS Publishers and Distributors, New Delhi.
- 2. Invertebrate Fossils. Moore R.C, Lalicker C.G and Fisher A.G (1952) McGraw Hill.
- 3. The Vertebrate Story, Romer A.S, (1959) University of Chicago Press, 4thEdt. Chicago.
- Palaeontology an Introduction, E.W. Nield and V.C.T. Tucker (1985) Pergamon Press, Oxford.
- 5. Colbert E.H. et al., Evolution of the Vertebrates, Wiley. New Delhi 2002)

Web Resources:

- "Age of the Earth". U.S. Geological Survey. 1997. Archived from the original on 23 December 2005. Retrieved 2006-01-10.
- 2. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London.
- 3. Digitalatlas.cose.ISU.edu>geo>basics>fossil
- 4. www.sciencedirect.com>topic>hemichordata
- 5. w.qm.qid.au>biodiscovery>corals

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

College of Arts & Science

Learn	Learning Outcomes:				
Upon s	uccessful completion of this course, the student will be able to				
COs	Statements	Bloom's Level			
CO1	Understand the basics of Fossils	K1			
CO2	Understand the importance of fossils in Geological studies	K2			
CO3	Know different phylum and their species with morphological changes	K3			
CO4	Understand and correlate fossil with various rock formations	K4			
CO5	Understand the importance of Paleontology in dating and evolution studies	K5			
K1	- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 -	Create			

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	3	3	2	3	3	3	2	2	
CO2	2	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	2	1	
CO4	3	3	3	3	3	2	1	1	
CO5	3	3	3	3	2	2	2	3	

3 - Strong, 2 – Medium, 1– Low

Semester: II	Course Code: 23UGECP01	Hours/Week:5	Credit: 5
COURSE TITLE:	CORE PRACTICAL I - CR PRACT		PALEONTOLOGY

Course Overview:

- 1. This course delves into the intricate world of minerals and crystallography, providing a comprehensive understanding of their classifications and unique structures.
- 2. The syllabus covers crystal systems, including isometric, tetragonal, hexagonal, orthorhombic, monoclinic, and triclinic, with detailed insights into representative minerals for each system.
- 3. Module 1: Isometric System Module 2: Tetragonal System Module 3: Hexagonal System
- Module 4: Orthorhombic System Module 5: Monoclinic System Module 6: Triclinic System Module 7: Twin Crystals
- 5. This course provides a solid foundation for understanding the diverse world of minerals, their crystal structures, and the fascinating phenomena of twin crystals.

Learning Objectives:

- 1. The main objective of this course is to enumerate the origin of Earth.
- 2. To describe the concepts of Dating and internal structure of the Earth
- 3. To explain various components of crystals and crystallography
- 4. To study various class and forms of an crystal system.
- 5. To determine various crystallographic properties of crystals with suitable examples.

Unit - I	Unit - I Crystal System			
Isometric System: Normal Class – Galena, Fluorite, Magnetite, Garnet, and Leucite, Copper				

isometrie System. Normal Class – Galena, Fluorite, Magnetite, Garnet, and Ledene,

Pyritohedral class – Pyrite, Tetrahedral Class – Tetrahedrite.

Tetragonal System: Normal Class – Zircon, Vesuvianite, Cassiterite, and Rutile.

Tripyramidal – Scheelite, Meionite Sphenidal Class – Chalcopyrite.

Hexagonal System: Normal Class – Beryl, Tripyramidal – Apatite,

Hemimorphic – Zincite, Rhombohedral Normal – Calcite, Trapezohedral Class – Quartz.

Unit - II	Crystal System	12 Hours
-----------	----------------	----------

Orthorhombic System: Normal – Barite, Sulphur, Stibnite, Topaz, Staurolite, and Aragonite. Hemimorphic – Calymene, Sphenoidal Class – Epsomite.

Monoclinic System: Normal – Gypsum, Pyroxenes and Amphiboles.

Triclinic System: Normal – Axinite, Albite, and Rhodonite.

Twin Crystals: Contact and Penetration twins of Fluorite, Iron Cross Twin of Pyrite,

Knee type twin of Cassiterite,

Polysynthetic twin of Aragonite, Cyclic twin of Cerussite, Swallow Tail of Gypsum,

Twins of Carlsbad, Baveno, Manebach, Albite law of Albite.

|--|

Identification and description of the following fossils:

Lamellibranchs: Arca, Meretrix, Pecten, Cardita, Lima, Allectronia, Inoceramus,

Gryphaea, Exogyra, Radiolites, Ostrea, Unio, Trigonia.

Gastropods: Turritella, Turbo, Cerithium, Trochus, Physa, Murex, Voluta, Helix,

Euomphalus, Cyprea.

Unit - IV	Identification of Fossils	12 Hours
-----------	---------------------------	----------

Cephalopods: Nautilus, Orthoceras, Ceratite, Goniatite, Belemnites, Baculites, and Perisphinctes.

Echinodermata: Cidaris, Holaster, Hemiaster, Stigmatophygus, Apiocrinus.

Trilobites: Paradoxides, Olenus, Olenellus, Phacops, Calymene.

Unit - V	Identification of Fossils	12 Hours
----------	---------------------------	----------

Corals: Calceola, Zaphrentis, Lithostrotion, Omphyma, Thecosmelia.

Brachiopoda: Terebratula, Spirifer, Productus, Monograptus, Tetragraptus, Diplograptus.

Text Book(s):

- 1. Mineralogy Dexter Perkins (2014), 3rd edition, Pearson New International Edition.
- 2. Principles of Geomorphology; William D. Thornbury, (2004) CBS Publishers and Distributors, New Delhi.
- 3. Agashe, S.N, Paleo botany, Oxford & IBH. Delhi(1995)
- 4. Stewart W.N. & G.W. Rothwell, Palaeobotany, Cambridge University Press. D (2005)
- 5. Moore R.C. et al., Invertebrate Fossils. CBS. Delhi (1952).

Reference Books:

- 1. Introduction to Mineralogy William D. Nesse (2000), Oxford University press, New York. USA.
- 2. Textbook of Mineralogy E.S. Dana, (2000), 3rd edition, CBS Publishers & Distributers, New Delhi.

- 3. Crystals and Crystal Structures Richard J. D. Tilley(2006), John Wiley & Sons, England.
- 4. Introduction to Mineralogy, Crystallography & Petrology Carl W. Correns (1967), 2nd edition, Springer
- 5. Colbert E.H. et al., Evolution of the Vertebrates, Wiley. New Delhi (2002)

Web Resources:

- 1. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London.
- 2. Digitalatlas.cose.ISU.edu>geo>basics>fossil
- 3. www.sciencedirect.com>topic>hemichordata

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learn	Learning Outcomes:					
Upon successful completion of this course, the student will be able to						
COs	os Statements					
CO1	The main objective of this course is to enumerate the fundamental aspects of Mineralogy in such a way as to stimulate the minds of the post-graduate students.	K1				
CO2	To describe the concepts of Mineralogy is essential to comprehend the concepts of Petrology.					
CO3	To explain the importance of instrumentation techniques for better analysis	K3				
CO4	To compare and contrast between the fascinating plethora of colorful minerals and crystals, this discipline requires good knowledge of Chemistry, and poses several intriguing questions, leading to sustained interest in this subject	K4				
CO5	Can evaluate the accuracy and summaries the methods adapted for certain practical activities.	K5				
K1	K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

Semester: II	Semester: II Course Code: 23UGEFC02		Credit: 2				
COURSE TITLE: FOUNDATION COURSE - BASICS OF EARTH SCIENCE							

Course Overview:

- 1. The course covers fundamental aspects of Earth science and the Universe.
- It explores the evolution of the Universe, characteristics of the Solar System including inner
 and outer planets, satellites, asteroids, meteors, and comets.
- Key Earth movements such as revolution, rotation, solstice, and equinox are examined.
 In the context of geology, the course delves into environmental impacts arising from mining
- 4. and mineral processing.
- Additionally, the course covers Fossil Fuels and Groundwater, providing a comprehensive
 overview of these geological components and their applications.

Learning Objectives:

- 1. The main objective of this course is to understand various properties of Earth.
- 2. To describe the concepts of internal structure of the Earth
- 3. To explain various components related to external processes of Earth
- 4. To study concepts of various currents and atmospheric circulation.
- 5. To understand the availability of elements in the Earth.

Unit - IEvolution of the Universe09 Hour
--

Universe – Evolution of the Universe.

Solar System - Inner and outer planets ,

Characteristics of solar system.

Satellites – Asteroids – Meteors – comets.

Earth – movements – revolution – rotation – solstice – equinox.

Atmosphere - El Nino - hydrosphere - lithosphere - Origin of the Earth.

Unit - II	Age of the Earth	09 Hours	
-----------	------------------	----------	--

Age of the Earth - old methods - new methods,

Radioactivity – Half-life period – Radiometric methods.

Interior of the Earth – Density – Shape

Seismic waves

Composition and thickness of the crust, mantle and core.

College of Arts & Science

Discontinuities: Conrad Discontinuity - Mohorovicic Discontinuity.

Unit - III	Introduction to Geomorphology	09 Hours
Introduction to Geo	morphology: Geological action of wind, water,	
Glaciers and ground	l water.	
Volcanoes and earth	nquakes.	
Rock deformation:	Folds, Faults, Joints, Cleavage, Unconformities	
Concepts of plate te	ectonics	
Sea floor spreading	and geosynclines.	
Unit - IV	Study of Fossils	09 Hours
Study of Fossils- In	troduction, Geological Record and its nature.	
Geological Time So	ale.	
Introduction, Defin	tion of Paleontology, Classification of Plants,	
Invertebrate and Ve	rtebrate fossils.	
	y (Burial Law), Types of Fossilization,	
Fossils - Tophonom	y (Dunai Law), Types of Tossinzation,	
Fossils - Tophonom Mode of preservation	• • • • •	
Mode of preservation	• • • • •	

Applications of Geology:

Environmental impacts due to mining and mineral process,

Engineering Geology: Dams, Reservoirs and Tunnels, strategic,

critical and essential mineral

Mineral resources of India. Fossil Fuels and Groundwater.

Text Book(s):

- 1. Mineralogy Dexter Perkins (2014), 3rd edition, Pearson New International Edition.
- 2. Principles of Geomorphology; William D. Thornbury, (2004) CBS Publishers and Distributors, New Delhi.
- 3. Patwardhan, A.M., Dynamic Earth System, Prentice Hall, New Delhi(1999)
- 4. Mukherjee A.K, Principles of Geology, EW Press, KoIkata(1990)
- 5. Reed, J.S. & T.H. Wicander, Essentials of Geology, McGraw Hill., New York(2005)

Reference Books:

- 1. Introduction to Mineralogy William D. Nesse (2000), Oxford University press, New York. USA.
- 2. Textbook of Mineralogy E.S. Dana, (2000), 3rd edition, CBS Publishers & Distributers, New Delhi.
- 3. Crystals and Crystal Structures Richard J. D. Tilley (2006), John Wiley & Sons, England.
- 4. Introduction to Mineralogy, Crystallography & Petrology Carl W. Correns (1967), 2nd edition, Springer
- 5. Radhakrishnan, V, General Geology, V.V.P. Publishers, Tuticorin (1996)

Web Resources:

- 1. "Age of the Earth". U.S. Geological Survey. 1997. Archived from the original on 23 December 2005. Retrieved 2006-01-10.
- 2. Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Special Publications, Geological Society of London.
- 3. Geo.libretexts.org
- 4. www.nationalgeographic.org
- 5. Solarsysytem.nasa.gov

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to							
COs	Statements	Bloom's Level					
CO1	Gather basic information on Earth Sciences	K1					
CO2	Understand the importance of various components of Earth	K2					
CO3	CO3 Process of Geomorphological features						
CO4	Understand, predict and analyze the fossil and dating	K4					
CO5	Apply the geological knowledge in various civil structures	K5					
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 –	Create					

Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

Semester: II	Course Code: 23UGENE02	Hours/Week: 2	Credit: 2		

COURSE TITLE: NON MAJOR ELECTIVE COURSE - OCEANOGRAPHY

Course Overview:

- 1. Oceanography is the scientific study of the ocean and its phenomena. It encompasses various disciplines such as physical, chemical, biological, and geological oceanography.
- 2. Understanding the ocean is crucial for climate regulation, marine life sustainability, and economic activities. It also contributes to predicting natural disasters like tsunamis and hurricanes.
- 3. Surface Configuration of the Ocean Floor
- 4. Horizontal and Vertical Distribution of Seawater Temperature
- 5. Marine resources include fish, minerals, and energy sources. Their distribution impacts industries and ecosystems.

Learning Objectives:

- 1. Understand the basics of Ocean
- 2. Understand the importance of Major Ocean affecting factor
- 3. Know different group of factor using tides
- 4. Understand the descriptive types of ocean
- 5. Understand the importance of Resource of ocean

Unit - I	Structure of Ocean Floor	09 Hours
----------	--------------------------	----------

Oceanography: Scope, Content, Significance

Distribution of Land and Sea

Hypsometric Curve

Surface Configuration of the Ocean Floor:

Oceanic Deeps and Submarine Canyons

Unit - II Major Oceans	09 Hours
------------------------	----------

Relief Features of the Major Oceans: Atlantic, Pacific and Indian Ocean

Horizontal and Vertical Distribution of Seawater Temperature.

Salinity: Factors Affecting Salinity and Distribution

College of Arts & Science

Unit - III	Ocean Circulation	09 Hours
------------	-------------------	----------

Ocean Water Circulation: Factors Influencing Ocean Circulation

General Circulation of Ocean Currents

Currents of the Atlantic, Pacific and Indian Ocean, Waves and Tides:

Definition and Types, Tsunamis: Origin and Effects

Unit - IV	Ocean Ecology	09 Hours
Marine Deposits: Classification and Distribution		
Coral Reefs types		
Conditions for the	Growth	
Unit - V	Marine Resources	09 Hours
Marine Resources:	Types	
Distribution and Us	ses	
Tidal Energy		

Role of National Institute of Oceanography in India

Text Book(s):

- Anikouchine, W. A. and Sternberg, R. W., (1973): The World Oceans An Introduction to Oceanography, Englewood Cliffs.
- 2. Garrison, T., (1998): Oceanography, Wadsworth Co.USA
- 3. Gerald, S. (1980): General Oceanography: An Introduction, John Wiley & Sons, New York
- King, C. A. M., (1972): Beaches and Coasts, E. Arnold, London: King, C. A. M., (1975): Oceanography for Geographers, E. Arnold, London
- Ramasamy, G., (1970): Oceanography (Tamil Edition), Tamil Nadu Text Book Society, Chennai

Reference Books:

 Sharma, R. C. and Vatel, M., (1970): Oceanography for Geographers, Cheytanya Publishing House, Allahabad

Web Resources:

1. https://www.uio.no/studier/emner/matnat/geofag/nedlagte-

emner/GEO1030/h17/undervisningsmateriale/oseanografi/kompendium-2016-1.pdf

 https://incois.gov.in/documents/Basics%20of%20Oceanography%20-%20INCOIS%20-%20P%20K%20Bhaskaran.pdf

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes:

Upon successful completion of this course, the student will be able to			
COs	Statements	Bloom's Level	
CO1	Understand the basics of Ocean	K1	
CO2	To Understand the importance of energy source in ocean studies	K2	
CO3	Know different tides form oceans	К3	
CO4	Understand the descriptive types of ocean	K4	
CO5	Understand the importance of oceans in India	K5	
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create			

Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	2	1	1	2	1	1	2	2

3 - Strong, 2 – Medium, 1 – Low

College of Arts & Science (Autonomous)

Semester: III	Course Code: 23UGECT04	Hours/Week: 5	Credit: 5		
COURSE TITLE: CORE IV - MINING GEOLOGY					

Course Overview:

- 1. Understanding the importance of accurate sampling in mining processes
- 2. Exploring various sampling methods for ore analysis.
- Introduction to different drilling equipment. Exploring drilling methodologies used in mining operations.

This course provides a comprehensive understanding of mining geology, covering

- 4. essential principles, terminology, drilling methods, explosives, and various mining techniques.
- It aims to equip learners with the knowledge necessary for successful exploration,
 extraction, and evaluation of mineral resources.

Learning Objectives:

- 1. Understand the basics components of Structural Geology
- 2. Know the formations of geological formations
- 3. Basics of Aerial Photographs
- 4. Understand the Application of Satellite science
- 5. Analyze various physiographical features through GIS

Unit - IIntroduction to Mining09 Hou	ırs
--------------------------------------	-----

Mining terms and their descriptions.

Sampling - Principles - Types of sampling,

Collection & preparation of samples.

Drilling: Types of drills and methods of drilling.

Geological logging.

Explosives and Blasting Methods.

Rock excavations.

Assaying and evaluation of ore-bodies

and their extensions-ore reserve estimation

Unit - II

Mining Terminology

Role of geology in mining industries

definition of mining terms, shaft, Hanging wall, Adit,

roof, Drive crosscut, Tunnel, Raise, Winze, Stope, Ventilation, Haulage

Surface methods of mining,

Alluvial mining - pan & betea, sluicing

Hydraulic king, Drift mining and Dredging.

Opencast mining. Benches, Explosives, working slope

Unit - III	Mining equipments	09 Hours
Mining equipments	s - Dragline, Mine machinery-power shovel,	
Bucket wheel excavator, conveyor and spreader Top slicing.		
Sublevel caving an	d Block caving.	
Coal mining (surfa	ce mining) Strip mining and Augering	

Transportation -cleaning - Grading - Shipping.

Underground mining.

Room and pillar method - Longwall method- hydraulicking.

Mineral Economics and its concept.

Role of Minerals in National Economy

Mineral conservation and substitution

Unit - V	Types of mining	09 Hours	
----------	-----------------	----------	--

Types of mining - Glory hole, Kaolin mining,

Granite mining, sand mining, stripping.

Ground water control

Power source roofing

Mining and environment

Mitigation of mining hazards.

Factors controlling the choice of various mining methods.

Text Book(s):

- Curran, P (1988). Principles of remote sensing. Corgman Publishers, London Lillesand, T.M and R.W. Kiefer (2000). Remote sensing and image interpretation.
- 2. John Wiley & Miller, V.C (1961). Photogeology. McGraw Hill Publishers, New York
- 3. Pandey, S.N (1987). Principles and applications of photogeology. Wiley Eastern
- 4. Ltd., New Delhi
- Sabins, F.F (1987). Remote sensing principles and interpretation. Freeman Publishers, New York
- Siegal, B.S and R. Gillespie (1980). Remote sensing in Geology, John Wiley & Sons, New York

Reference Books:

- 1. Arogyaswamy, R.N.P. Courses in Mining Geology Oxford &IBH, New Delhi.
- 2. Thamus, P.J. 1979 An introduction to mining, Methun.
- 3. Mc Kinstry, H.E 1960 Mining Geology, New york.
- 4. Allum, J.A.E (1978). Photogeology and regional mapping, Pergamon Press Ltd., Oxford.
- Anji Reddy, M (2001). Textbook of remote sensing and GIS, BSP PS Publications, New Delhi

Web Resources:

- 1. .https://www.forgottenbooks.com > download
- 2. https://study.com/academy/lesson/what-is-economic-geology.html

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level				
CO1	Understand the basics components of Structural Geology	K1				
CO2	Know the formations of geological formations	K2				
CO3	Basics of Aerial Photographs	K3				
CO4	Understand the Application of Satellite science	K4				
CO5	Analyze various physiographical features through GIS	K5				
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create						

College of Arts & Science

	Mapping (COs vs POs)							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

Semester: III	Course Code: 23UGECT05	Hours/Week: 5	Credit: 5			
COURSE	COURSE TITLE:CORE V - GEOMORPHOLOGY AND GEOTECTONICS					

Course Overview:

- 1. In geomorphology, the fluvial cycle involves the development of landforms through running water, including valley formation, river capture, waterfalls, meandering, and the creation of river terraces.
- 2. Wind and underground water contribute to geological processes, shaping landscapes.
- 3. The ocean floor's topography is influenced by erosional and depositional features, including coral reefs with diverse types and theories explaining their origin
- 4. Volcanoes, characterized by structure and types, produce various products and are globally distributed.
- 5. This overview encompasses the dynamic processes that shape Earth's surface and geological phenomena occurring both above and below the surface.

Learning Objectives:

- 1. Know the basics of Geotectonics and landforms
- 2. Understand the importance of various geomorphological agencies.
- 3. Process of Geomorphological features and creation of landforms
- 4. Understand and predict Earth's Internal and external processes
- 5. Predict the future from the past formed features

Unit - I	Introduction of Geomorphology	09 Hours		
----------	-------------------------------	----------	--	--

Interpretation of fluvial cycle

Landforms developed by running water

Valley development, river capture, waterfalls, meandering, river terraces,

Lakes, their types and deposits.

Geological work of wind and Underground water.

Unit - II	Landforms	09 Hours	
-----------	-----------	----------	--

Glaciers – formation, movement, types and landforms due to their erosional

and transportational activity.

Topography of ocean floor - erosional and depositional features of oceans

Coral reefs, types, theories for the origin of coral reefs

Submarine Canyons.

Unit - III	Landforms	09 Hours
------------	-----------	----------

Mountains – their kinds, development and important mountain building movements.

Processes of weathering -types and products-

Mass Movements.

Unit - IV	Geotectonics	09 Hours	

Earthquakes - types - seismographs - intensity and Magnitude scales (Richter & Mercalli)

Tsunami - Global Distribution

Volcanoes – structure, types – products

Global Distribution

Unit - V	Geotectonics	09 Hours	

Continental drift – Wegner Concept – various evidences.

Plate tectonics - concept - plate characteristics - larger and smaller plates

Types of plate boundaries – causes and mechanism of plate motions.

Text Book(s):

- 1. Worcester, P.G., A Text Book of Geomorphology, East West Press Ltd. Delhi.(1960)
- 2. Sathya Narayanaswami, B.S. Structural Geology. Dhanpat Rai & Sons. New Delhi.(1994)
- 3. GokhaIe, N.W., Theory of Structural Geology, CBS, Delhi(1995)

- 4. Davis, G.H, Structural Geology of Rocks and Regions. Elements of Structural geology, Wiley(1985)
- 5. Ragan D.M., Structural Geology-An Introduction to geometrical Techniques. Wiley. New York(2000)

Reference Books:

- 1. HiIIs E.S., Elements of Structural Geology, Chapman & Hall. London(1963)
- 2. Mahapatra G.B. Textbook of Physical Geology, CBS publications, Delhi(1994).
- 3. Park, P.G., Foundations of Structural Geology, Blackie. London (1983).
- 4. Radhakrishnan V, General Geology, V.V.P. Publications, Tuticorin (1996),
- 5. Bloom A., Principles of Geomorphology (1985).

Web Resources:

- 1. http://www.labotka.net
- 2. http://www.patnasciencecollege.org
- 3. https://geomorphology.org.uk
- 4. https://gradeup.co

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level			
CO1	Know the basics of Geotectonics and landforms	K1			
CO2	Understand the importance of various geomorphological agencies	K2			
CO3	Process of Geomorphological features and creation of landforms	K3			
CO4	Understand and predict Earth's Internal and external processes	K4			
CO5	To fit the curve using geological data.	K5			
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

Mapping (COs vs POs)								
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								PO8
CO1	3	3	2	3	3	3	2	2
CO2	2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	2	1
CO4	3	3	3	3	3	2	1	1
CO5	3	3	3	3	2	2	2	3

3 - Strong, 2 – Medium, 1 – Low

Semester: III Course Code: 23UGESO02	Hours/Week: 1	Credit:1
--------------------------------------	---------------	----------

COURSE TITLE: SEC IV- PRINCIPLES OF SURVEYING

Course Overview:

- 1. In entrepreneurship surveying, principles play a crucial role.
- 2. The course covers surveying's objectives, uses, classification, and principles.
- It delves into units of measurement, errors (sources, types, corrections), accuracy, precision, and stages of survey operations.
- 4. Linear measurement methods, including devices like ranging rods, chains, and tapes, are explored for distance measurement.
- 5. The course provides a comprehensive overview to equip entrepreneurs with essential surveying skills.

Learning Objectives:

- 1. To learn about the principles of surveying, sources and errors.
- 2. To know about the components and procedures of Prismatic Compass and Traverse survey.
- 3. Know about the leveling procedures, instruments and its applications.
- 4. Understand the principles, adjustments, methods of Plane Table Survey.
- 5. To acquire the knowledge about the Total Station Survey and its merits and demerits.

Unit - I	Introduction of Surveying	09 Hours
Surveying: Introduction	on – objectives – Uses,	
Classification – Princip	ple of Surveying	
Units of measurement	LS .	

Errors – Sources, Types of errors

and their corrections – accuracy and precision

Stages of survey operations

Methods of Linear Measurement

Distance measurement devices: Ranging rod, Chain, tape.

Unit - II Measurement of Angles 09 Hours	
--	--

Measurement of Angles and Directions – Definitions,

Meridians – Bearings – Magnetic and True bearings – Azimuth.

Prismatic Compass: Components -Adjustment of the compass: Centering,

Leveling, and focusing the prism.

Traverse: Types of the traverse -procedures - Control establishments,

Adjustment of closing error.

Unit - IIISurveying09 Hour

Leveling and its application: Introduction to Leveling – Methods

Types of instruments –Description of Dumpy level: Temporary adjustment of level.

Auto leveling: Types – Parts – Operation – Merits and demerits.

Unit - IV	Surveying	09 Hours
-----------	-----------	----------

Table Surveying: Definition - Principles - Accessories

Temporary adjustments – Setting up the Plane Table

Methods of Plane table surveying: Radiation, Intersection,

Traversing & Resection methods.

Advantages, disadvantages and Errors in Plane Tabling.

Unit - V	Surveying	09 Hours

Total Station Survey: Introduction – Features: Linear,

Angle and Height measurements

Accessories - Setting - up and orientation

Types of error and error correction

Advantages and disadvantages of TSS

Introduction to Drone Survey.

Text Book(s):

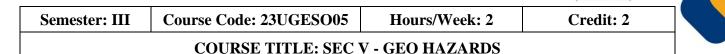
- 1. Novin, C. M. Principles of structural Geology John Willey, New York.
- 2. Gokhale, N. W. Theory of Structural Geology, CBS Publishers.
- 3. Billings, M.P. Structural Geology: Prentice Hall, Englewood Clifts, U.S.A

Reference Books:

AVS College of Arts & Science (Autonomous)

- 1. V.V. Belousov Structural Geology, Moscow
- 2. P.C. Bedgley Structural and Tectonic, Principles: Harper & Row, New York
- 3. E.W. Spencer An Introduction to structural Geology: Mc Graw Hill, New York.

Web Resources:


- https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000014ER/P000274/M027317 /ET/1518524040paper4module_27_etext.pdf
- 2. https://sciences.uodiyala.edu.iq/uploads.

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	Learning Outcomes: Upon successful completion of this course, the student will be able to				
COs Statements					
CO1	Gain the knowledge over principles, various errors and types of surveying.	K1			
CO2 Ability to know the measurement of angles and direction using Prismatic Compass survey.					
CO3	Gaining knowledge about leveling instruments and its applications.	K3			
CO4	Complete understating the Plane Table survey.	K4			
CO5	Understand the concept of recent techniques of Total Station	K5			
K1	K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create				

Mapping (COs vs POs)									
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								
CO1	3	3	2	3	3	3	2	2	
CO2	2	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	2	1	
CO4	3	3	3	3	3	2	1	1	
CO5	3	3	3	3	2	2	2	3	

3- Strong, 2 – Medium, 1 – Low

Course Overview:

- 1. Geohazards refer to catastrophic geological events such as floods, tsunamis, landslides, earthquakes, volcanic eruptions, and avalanches
- 2. The study of these natural hazards involves assessing their magnitude, predicting occurrences, and understanding public perception.
- 3. Laws and regulations play a crucial role in guiding hazard management efforts,
- 4. Providing an overarching framework for addressing and mitigating these potentially devastating events.
- 5. The goal is to predict and understand these hazards better, leading to effective hazard management strategies.

Learning Objectives:

- 1. To explain students about the physical and geological processes causing geo-hazards.
- 2. To discuss the methods for quantifying geohazards.
- 3. To understand the possible consequences as well as risk and disastermanagement.
- 4. Aware the geological and physical process wereto bediscussed.
- 5. Different types of geohazards, disaster prevention and management.

Unit - I	Hazard management	09 Hours

Natural Hazard – Definition

Earth's processes: catastrophic geological hazards

Study of floods, tsunamis, Landslides, Earthquakes

Volcanism and avalanches – with a view to assess the magnitude of the problem,

Prediction and perception of the hazards.

Laws and regulations towards hazard management.

	Unit - II	Seismology	09 Hours	
--	-----------	------------	----------	--

Earthquakes – Definition – focus – epicenter - seismic waves - intensity and

Magnitude - Richter scales

Scales – Tsunami – Seismograph - seismogram

Seismicity in Indian region

Seismic gaps - mitigation measures and management.

College of Arts & Science

Preparation of seismic hazard map.

Unit - III	Volcano and Mitigation	09 Hours
Volcanoes-Definiti	on-structure - types–Global distribution,	
Mitigation measure	es and management.	
Avalanche –Defini	tion-types-mitigation	
Definition- causes	- vulnerable zones in India,	
Mitigation measure	es and management	
Coastal erosion-its	s causes-mitigation measures and management.	
Unit - IV	Types of Landslides	09 Hours
Landslides-types-sl	low flowage, rapid flowage, sliding and	
subsidence-causes	and mechanism-Vulnerable zones in India	
Mitigation measure	es and management.	
Deforestation and l	and degradation	
Cyclone- Definition	n-causes - vulnerable zones in India,	

mitigation measures and management.

Unit - V	Erosion	09 Hours
----------	---------	----------

Mass movement - factor in fluencing slope stability,

types of mass movement - hazards of mass movement,

Strategies for their reduction and the role of geology.

Soil erosion - Soil formation - soil classification,

factor influencing soil erosion - hazards of soil erosion

Text Book(s):

- Geology, environment, Society K.S. Valdiya (2004) Universities Press (India) Private Limited, Hyderabad, India
- Coping with natural hazards: Indian context K.S. Valdiya (2004) Orient Longman Private Limited, Hyderabad, India.
- 3. Engineering and general geology Parbin Singh (2003) S.K. Katariaand sons DelhiIndia

Reference Books:

- 1. Genaral Geology V. Radhakrishnan (1996) V.V.P. Publishers, Tuticorin, India.
- 2. Lundgren (1986).Environment Geology, Rentice Hall Publishers, New Jersey.

Web Resources:

- 1. https://www.colorado.edu/center/mortenson/sites/default/files/attached-files/geohazards_0.pdf
- 2. https://www.eolss.net/sample-chapters/c12/E1-07-01-04.pdf
- 3. https://is.muni.cz/el/1431/podzim2011/G5991/CZ010_Intro.pdf

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

COs Statements				
CO1	Explain the physical and geological processes causing geohazards such as landslides, floods, tsunamis and earthquakes.	K1		
CO2 Describe methods for quantifying hazard for the individual geohazards and factors controlling the irun certainty				
CO3 Explain possible consequences of geohazards as well as risk and disaster management.				
CO4	Complete a basic hazard assessment for selected geohazards.	K4		
CO5 Gain an additional knowledge on possible interactions between geohazards K5				
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 -	- Create		

Mapping (COs vs POs)								
	PO1 PO2 PO3 PO4 PO5							
CO1	2	1	3	1	3			
CO2	2	1	2	3	1			
CO3	3	2	2	2	2			
CO4	2	2	3	1	2			
CO5	3	2	1	2	3			

3 - Strong, 2 – Medium, 1 – Low